

Re	eg. No.	
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: : PUTTUR		
(AUTONOMOUS) B. Tooh, H. Voor, H. Somostor, Pogular & Supplementary, Exeminations, May 2010		
STRENGTH OF MATERIALS -II		
(Civil Engineering)		
r	Time: 3 hoursMax.Marks:60	
	(Answer all Five Units 5 X $12 = 60$ Marks)	
1	UNIT-1	4 N /
1	b A rectangular element in a strained material is subjected to tensile stresses of	4M
	120 N/mm ² and 60 N/mm ² on two mutually perpendiclar planes together with a shear	0101
	stress of 70N/mm ² . Find the principal stresses, principal planes and maximum shear	
	stress in the block? Also find the plane of maximum shear stress?	
2	OR	1014
2	List out the different theories of failure. Explain any three theories of failure.	12M
3	A compound cylinder is composed of a tube of 250 mm internal diameter at 25mm wall	12M
	thickness. It is shrunk on to a tube of 200mm internal diameter. The radial pressure at	
	the junction is $8N/mm^2$. Find the variation of hoop stress across the thickness of wall of	
	the compound cylinder, if it is under an internal fluid pressure of 60N/mm?	
4	a Calculate the increase in volume of a boiler. 3m long and 1m diameter when subjected	6M
-	to an internal pressure of 200 N/cm ² ? The wall thickness is such that the maximum	
	tensile stress does not exceed 30Mpa. Take $E = 2.1 \times 10^4 \text{N/mm}^2$ and $\frac{1}{10} = 0.30$.	
	b Derive an expression for circumferential stress induced in a thin spherical shell	6M
	subjected to an internal fluid pressure of 'p'.	
	UNIT-IIII	
5	a Derive the equation for resultant stress when a column of rectangular section is	6M
	subjected to a load which is eccentric to both the axes.	6M
	OR	UNI
6	a Explain the concept of springs in series and springs in parallel.	6M
	b A leaf spring carries a central load of 3000N. The leaf spring is to be made of 10	6M
	steel plates of 50mm width and 6mm thick. If the bending stress is limited to	
	150N/mm ² , determine the length of the spring and deflection at centre of the spring? Take $E = 2x 10^5 N/mm^2$.	
7	a Explain the limitation of Euler's formula	4M
	b Derive the equation for the Euler's crippling load for a column when both ends are	8M
	fixed.	
0		1035
8	A built up column consisting of rolled steel beam ISWB 300 with two plates 200mm x 10mm connected at the top and bottom flanges. Calculate the safe load the column con	12M
	carry, if the length is $3m$ and both ends are fixed? Take factor of safety =3. fc = 320	

N/mm² and $\alpha = \frac{1}{7500}$.

2M

UNIT-V

- 9 a What is un-symmetrical bending?
 - b Determine the principal moments of inertia for an unequal angle section 125 mm X 10M 75mm x 10mm?

OR

10 A curved beam is in the form of full continuous circle in plane with a radius of 4m and 12M is supported continuously on six supports. The beam carrying an u.d.l of 2KN/m inclusive of its own weight. Determine the bending moment and twisting moment at salient locations? The coefficients C_1 , C_2 and C_3 are 0.089, 0.045 and 0.009 respectively. Draw the bending moment and twisting moment diagrams.